Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Adv Healthc Mater ; : e2303654, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38387090

RESUMO

Oral delivery of peptide therapeutics faces multiple challenges due to their instability in the gastrointestinal tract and low permeation capability. In this study, the aim is to develop a liposomal nanocarrier formulation to enable the oral delivery of the vancomycin-peptide derivative FU002. FU002 is a promising, resistance-breaking, antibiotic which exhibits poor oral bioavailability, limiting its potential therapeutic use. To increase its oral bioavailability, FU002 is incorporated into tetraether lipid-stabilized liposomes modified with cyclic cell-penetrating peptides on the liposomal surface. This liposomal formulation shows strong binding to Caco-2 cells without exerting cytotoxic effects in vitro. Pharmacokinetics studies in vivo in rats reveal increased oral bioavailability of liposomal FU002 when compared to the free drug. In vitro and in vivo antimicrobial activity of FU002 are preserved in the liposomal formulation. As a highlight, oral administration of liposomal FU002 results in significant therapeutic efficacy in a murine systemic infection model. Thus, the presented nanotechnological approach provides a promising strategy for enabling oral delivery of this highly active vancomycin derivative.

2.
Nanomedicine ; 56: 102731, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158147

RESUMO

Antibiotic resistance still represents a global health concern which diminishes the pool of effective antibiotics. With the vancomycin derivative FU002, we recently reported a highly potent substance active against Gram-positive bacteria with the potential to overcome vancomycin resistance. However, the translation of its excellent antimicrobial activity into clinical efficiency could be hampered by its rapid elimination from the blood stream. To improve its pharmacokinetics, we encapsulated FU002 in PEGylated liposomes. For PEG-liposomal FU002, no relevant cytotoxicity on liver, kidney and red blood cells was observed. Studies in Wistar rats revealed a significantly prolonged blood circulation of the liposomal antibiotic. In microdilution assays it could be demonstrated that encapsulation does not diminish the antimicrobial activity against staphylococci and enterococci. Highlighting its great potency, liposomal FU002 exhibited a superior therapeutic efficacy when compared to the free form in a Galleria mellonella larvae infection model.


Assuntos
Lipossomos , Vancomicina , Ratos , Animais , Vancomicina/farmacologia , Ratos Wistar , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Staphylococcus
3.
Fitoterapia ; 167: 105475, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940919

RESUMO

The ongoing threat of Antimicrobial Resistance (AMR) complicated by the rise of Multidrug-Resistant (MDR) pathogens calls for increased efforts in the search for novel treatment options. While deriving inspiration from antibacterial natural compounds, this study aimed at using synthetic approaches to generate a series of glucovanillin derivatives and explore their antibacterial potentials. Among the synthesized derivatives, optimum antibacterial activities were exhibited by those containing 2,4- and 3,5-dichlorophenylamino group coupled to a glucovanillin moiety (compounds 6h and 8d respectively). In those compounds, the Minimum Inhibitory Concentrations (MIC) of 128-256 µg/mL were observed against reference and MDR strains of Klebsiella pneumoniae, Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). Moreover, these findings emphasize the claims from previous reports on the essence of smaller molecular size, the presence of protonatable amino groups and halogens in potential antibacterial agents. The observed moderate and broad-spectrum activities of the stated derivatives point to their suitability as potential leads towards further efforts to improve their antibacterial activities.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Estrutura Molecular , Antibacterianos/farmacologia , Benzaldeídos , Testes de Sensibilidade Microbiana
4.
Front Immunol ; 14: 1127709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969151

RESUMO

Humanized hemato-lymphoid system mice, or humanized mice, emerged in recent years as a promising model to study the course of infection of human-adapted or human-specific pathogens. Though Staphylococcus aureus infects and colonizes a variety of species, it has nonetheless become one of the most successful human pathogens of our time with a wide armory of human-adapted virulence factors. Humanized mice showed increased vulnerability to S. aureus compared to wild type mice in a variety of clinically relevant disease models. Most of these studies employed humanized NSG (NOD-scid IL2Rgnull) mice which are widely used in the scientific community, but show poor human myeloid cell reconstitution. Since this immune cell compartment plays a decisive role in the defense of the human immune system against S. aureus, we asked whether next-generation humanized mice, like NSG-SGM3 (NOD-scid IL2Rgnull-3/GM/SF) with improved myeloid reconstitution, would prove to be more resistant to infection. To our surprise, we found the contrary when we infected humanized NSG-SGM3 (huSGM3) mice with S. aureus: although they had stronger human immune cell engraftment than humanized NSG mice, particularly in the myeloid compartment, they displayed even more pronounced vulnerability to S. aureus infection. HuSGM3 mice had overall higher numbers of human T cells, B cells, neutrophils and monocytes in the blood and the spleen. This was accompanied by elevated levels of pro-inflammatory human cytokines in the blood of huSGM3 mice. We further identified that the impaired survival of huSGM3 mice was not linked to higher bacterial burden nor to differences in the murine immune cell repertoire. Conversely, we could demonstrate a correlation of the rate of humanization and the severity of infection. Collectively, this study suggests a detrimental effect of the human immune system in humanized mice upon encounter with S. aureus which might help to guide future therapy approaches and analysis of virulence mechanisms.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Camundongos , Humanos , Animais , Camundongos Endogâmicos NOD , Citocinas , Neutrófilos , Camundongos Knockout
5.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36145359

RESUMO

Increasing antibacterial drug resistance threatens global health, unfortunately, however, efforts to find novel antibacterial agents have been scaled back by the pharmaceutical industry due to concerns about a poor return on investment. Nevertheless, there is an urgent need to find novel antibacterial compounds to combat antibacterial drug resistance. The synthesis of novel drugs from natural sources is mostly cost-intensive due to those drugs' complicated structures. Therefore, it is necessary to find novel antibacterials by simple synthesis to become more attractive for industrial production. We succeeded in the discovery of four antibacterial compound (sub)classes accessible in a simple one-pot reaction based on fluorinated benzothiophene-indole hybrids. They have been evaluated against various S. aureus and MRSA strains. Structure- and substituent-dependent activities have been found within the (sub)classes and promising lead compounds have been identified. In addition, bacterial pyruvate kinase was found to be the molecular target of the active compounds. In conclusion, simple one-pot synthesis of benzothiophene-indoles represents a promising strategy for the search of novel antimicrobial compounds.

6.
Molecules ; 27(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35956993

RESUMO

The search for new antibiotics against multidrug-resistant (MDR), Gram-negative bacteria is crucial with respect to filling the antibiotics development pipeline, which is subject to a critical shortage of novel molecules. Screening of natural products is a promising approach for identifying antimicrobial compounds hosting a higher degree of novelty. Here, we report the isolation and characterization of four galloylglucoses active against different MDR strains of Escherichia coli and Klebsiella pneumoniae. A crude acetone extract was prepared from Paeonia officinalis Linnaeus leaves, and bioautography-guided isolation of active compounds from the extract was performed by liquid-liquid extraction, as well as open column, flash, and preparative chromatographic methods. Isolated active compounds were characterized and elucidated by a combination of spectroscopic and spectrometric techniques. In vitro antimicrobial susceptibility testing was carried out on E. coli and K. pneumoniae using 2 reference strains and 13 strains hosting a wide range of MDR phenotypes. Furthermore, in vivo antibacterial activities were assessed using Galleria mellonella larvae, and compounds 1,2,3,4,6-penta-O-galloyl-ß-d-glucose, 3-O-digalloyl-1,2,4,6-tetra-O-galloyl-ß-d-glucose, 6-O-digalloyl-1,2,3,4-tetra-O-galloyl-ß-d-glucose, and 3,6-bis-O-digalloyl-1,2,4-tri-O-galloyl-ß-d-glucose were isolated and characterized. They showed minimum inhibitory concentration (MIC) values in the range of 2-256 µg/mL across tested bacterial strains. These findings have added to the number of known galloylglucoses from P. officinalis and highlight their potential against MDR Gram-negative bacteria.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Escherichia coli , Taninos Hidrolisáveis , Klebsiella pneumoniae , Paeonia , Extratos Vegetais , Antibacterianos/química , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Glucose/farmacologia , Humanos , Taninos Hidrolisáveis/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Paeonia/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia
7.
Immunity ; 55(10): 1813-1828.e9, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36002023

RESUMO

Lymphatic transport of molecules and migration of myeloid cells to lymph nodes (LNs) continuously inform lymphocytes on changes in drained tissues. Here, using LN transplantation, single-cell RNA-seq, spectral flow cytometry, and a transgenic mouse model for photolabeling, we showed that tissue-derived unconventional T cells (UTCs) migrate via the lymphatic route to locally draining LNs. As each tissue harbored a distinct spectrum of UTCs with locally adapted differentiation states and distinct T cell receptor repertoires, every draining LN was thus populated by a distinctive tissue-determined mix of these lymphocytes. By making use of single UTC lineage-deficient mouse models, we found that UTCs functionally cooperated in interconnected units and generated and shaped characteristic innate and adaptive immune responses that differed between LNs that drained distinct tissues. Lymphatic migration of UTCs is, therefore, a key determinant of site-specific immunity initiated in distinct LNs with potential implications for vaccination strategies and immunotherapeutic approaches.


Assuntos
Linfonodos , Linfócitos T , Animais , Modelos Animais de Doenças , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T
8.
Front Immunol ; 13: 892053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795674

RESUMO

MRSA (Methicillin-resistant Staphylococcus aureus) is the second-leading cause of deaths by antibiotic-resistant bacteria globally, with more than 100,000 attributable deaths annually. Despite the high urgency to develop a vaccine to control this pathogen, all clinical trials with pre-clinically effective candidates failed so far. The recent development of "humanized" mice might help to edge the pre-clinical evaluation closer to the clinical situation and thus close this gap. We infected humanized NSG mice (huNSG: (NOD)-scid IL2Rγnull mice engrafted with human CD34+ hematopoietic stem cells) locally with S. aureus USA300 LAC* lux into the thigh muscle in order to investigate the human immune response to acute and chronic infection. These mice proved not only to be more susceptible to MRSA infection than wild-type or "murinized" mice, but displayed furthermore inferior survival and signs of systemic infection in an otherwise localized infection model. The rate of humanization correlated directly with the severity of disease and survival of the mice. Human and murine cytokine levels in blood and at the primary site of infection were strongly elevated in huNSG mice compared to all control groups. And importantly, differences in human and murine immune cell lineages surfaced during the infection, with human monocyte and B cell numbers in blood and bone marrow being significantly reduced at the later time point of infection. Murine monocytes in contrast behaved conversely by increasing cell numbers. This study demonstrates significant differences in the in vivo behavior of human and murine cells towards S. aureus infection, which might help to sharpen the translational potential of pre-clinical models for future therapeutic approaches.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Animais , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Monócitos , Músculos , Staphylococcus aureus , Coxa da Perna
9.
Front Microbiol ; 13: 888140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656003

RESUMO

Old yellow enzymes (OYEs) are widely found in the bacterial, fungal, and plant kingdoms but absent in humans and have been used as biocatalysts for decades. However, OYEs' physiological function in bacterial stress response and infection situations remained enigmatic. As a pathogen, the Gram-positive bacterium Staphylococcus aureus adapts to numerous stress conditions during pathogenesis. Here, we show that in S. aureus genome, two paralogous genes (ofrA and ofrB) encode for two OYEs. We conducted a bioinformatic analysis and found that ofrA is conserved among all publicly available representative staphylococcal genomes and some Firmicutes. Expression of ofrA is induced by electrophilic, oxidative, and hypochlorite stress in S. aureus. Furthermore, ofrA contributes to S. aureus survival against reactive electrophilic, oxygen, and chlorine species (RES, ROS, and RCS) via thiol-dependent redox homeostasis. At the host-pathogen interface, S. aureusΔofrA has defective survival in macrophages and whole human blood and decreased staphyloxanthin production. Overall, our results shed the light onto a novel stress response strategy in the important human pathogen S. aureus.

10.
Nat Commun ; 13(1): 1525, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314690

RESUMO

A central question concerning natural competence is why orthologs of competence genes are conserved in non-competent bacterial species, suggesting they have a role other than in transformation. Here we show that competence induction in the human pathogen Staphylococcus aureus occurs in response to ROS and host defenses that compromise bacterial respiration during infection. Bacteria cope with reduced respiration by obtaining energy through fermentation instead. Since fermentation is energetically less efficient than respiration, the energy supply must be assured by increasing the glycolytic flux. The induction of natural competence increases the rate of glycolysis in bacteria that are unable to respire via upregulation of DNA- and glucose-uptake systems. A competent-defective mutant showed no such increase in glycolysis, which negatively affects its survival in both mouse and Galleria infection models. Natural competence foster genetic variability and provides S. aureus with additional nutritional and metabolic possibilities, allowing it to proliferate during infection.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Fermentação , Glicólise/genética , Camundongos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
11.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35215272

RESUMO

As multidrug-resistant bacteria represent a concerning burden, experts insist on the need for a dramatic rethinking on antibiotic use and development in order to avoid a post-antibiotic era. New and rapidly developable strategies for antimicrobial substances, in particular substances highly potent against multidrug-resistant bacteria, are urgently required. Some of the treatment options currently available for multidrug-resistant bacteria are considerably limited by side effects and unfavorable pharmacokinetics. The glycopeptide vancomycin is considered an antibiotic of last resort. Its use is challenged by bacterial strains exhibiting various types of resistance. Therefore, in this study, highly active polycationic peptide-vancomycin conjugates with varying linker characteristics or the addition of PEG moieties were synthesized to optimize pharmacokinetics while retaining or even increasing antimicrobial activity in comparison to vancomycin. The antimicrobial activity of the novel conjugates was determined by microdilution assays on susceptible and vancomycin-resistant bacterial strains. VAN1 and VAN2, the most promising linker-modified derivatives, were further characterized in vivo with molecular imaging and biodistribution studies in rodents, showing that the linker moiety influences both antimicrobial activity and pharmacokinetics. Encouragingly, VAN2 was able to undercut the resistance breakpoint in microdilution assays on vanB and vanC vancomycin-resistant enterococci. Out of all PEGylated derivatives, VAN:PEG1 and VAN:PEG3 were able to overcome vanC resistance. Biodistribution studies of the novel derivatives revealed significant changes in pharmacokinetics when compared with vancomycin. In conclusion, linker modification of vancomycin-polycationic peptide conjugates represents a promising strategy for the modulation of pharmacokinetic behavior while providing potent antimicrobial activity.

12.
Microorganisms ; 9(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34683468

RESUMO

Serine/threonine kinase PknB and its corresponding phosphatase Stp are important regulators of many cell functions in the pathogen S. aureus. Genome-scale gene expression data of S. aureus strain NewHG (sigB+) elucidated their effect on physiological functions. Moreover, metabolic modelling from these data inferred metabolic adaptations. We compared wild-type to deletion strains lacking pknB, stp or both. Ser/Thr phosphorylation of target proteins by PknB switched amino acid catabolism off and gluconeogenesis on to provide the cell with sufficient components. We revealed a significant impact of PknB and Stp on peptidoglycan, nucleotide and aromatic amino acid synthesis, as well as catabolism involving aspartate transaminase. Moreover, pyrimidine synthesis was dramatically impaired by stp deletion but only slightly by functional loss of PknB. In double knockouts, higher activity concerned genes involved in peptidoglycan, purine and aromatic amino acid synthesis from glucose but lower activity of pyrimidine synthesis from glucose compared to the wild type. A second transcriptome dataset from S. aureus NCTC 8325 (sigB-) validated the predictions. For this metabolic adaptation, PknB was found to interact with CdaA and the yvcK/glmR regulon. The involved GlmR structure and the GlmS riboswitch were modelled. Furthermore, PknB phosphorylation lowered the expression of many virulence factors, and the study shed light on S. aureus infection processes.

13.
PLoS Pathog ; 17(9): e1009874, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34473800

RESUMO

Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection.


Assuntos
Cisteína Endopeptidases/metabolismo , Células Epiteliais/patologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Animais , Morte Celular/fisiologia , Células Epiteliais/microbiologia , Humanos , Camundongos , Staphylococcus aureus/patogenicidade , Fatores de Virulência/metabolismo
14.
PLoS One ; 16(7): e0255437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34324599

RESUMO

BACKGROUND: Reproducibility of reported antibacterial activities of plant extracts has long remained questionable. Although plant-related factors should be well considered in serious pharmacognostic research, they are often not addressed in many research papers. Here we highlight the challenges in reproducing antibacterial activities of plant extracts. METHODS: Plants with reported antibacterial activities of interest were obtained from a literature review. Antibacterial activities against Escherichia coli and Klebsiella pneumoniae were tested using extracts' solutions in 10% DMSO and acetone. Compositions of working solutions from both solvents were established using LC-MS analysis. Moreover, the availability of details likely to affect reproducibility was evaluated in articles which reported antibacterial activities of studied plants. RESULTS: Inhibition of bacterial growth at MIC of 256-1024 µg/mL was observed in only 15.4% of identical plant species. These values were 4-16-fold higher than those reported earlier. Further, 18.2% of related plant species had MICs of 128-256 µg/mL. Besides, 29.2% and 95.8% of the extracts were soluble to sparingly soluble in 10% DMSO and acetone, respectively. Extracts' solutions in both solvents showed similar qualitative compositions, with differing quantities of corresponding phytochemicals. Details regarding seasons and growth state at collection were missing in 65% and 95% of evaluated articles, respectively. Likewise, solvents used to dissolve the extracts were lacking in 30% of the articles, whereas 40% of them used unidentified bacterial isolates. CONCLUSION: Reproducibility of previously reported activities from plants' extracts is a multi-factorial aspect. Thus, collective approaches are necessary in addressing the highlighted challenges.


Assuntos
Antibacterianos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Folhas de Planta/química , Reprodutibilidade dos Testes
15.
Molecules ; 27(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35011293

RESUMO

Ongoing resistance developments against antibiotics that also affect last-resort antibiotics require novel antibacterial compounds. Strategies to discover such novel structures have been dimerization or hybridization of known antibacterial agents. We found novel antibacterial agents by dimerization of indols and hybridization with carbazoles. They were obtained in a simple one-pot reaction as bisindole tetrahydrocarbazoles. Further oxidation led to bisindole carbazoles with varied substitutions of both the indole and the carbazole scaffold. Both the tetrahydrocarbazoles and the carbazoles have been evaluated in various S. aureus strains, including MRSA strains. Those 5-cyano substituted derivatives showed best activities as determined by MIC values. The tetrahydrocarbazoles partly exceed the activity of the carbazole compounds and thus the activity of the used standard antibiotics. Thus, promising lead compounds could be identified for further studies.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/síntese química , Carbazóis/química , Técnicas de Química Sintética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Análise Espectral , Relação Estrutura-Atividade
16.
Future Med Chem ; 12(13): 1205-1211, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32515228

RESUMO

Background: Resistance developments against established antibiotics are an emerging problem for antibacterial therapies. Novel antibiotics are urgently needed. Materials & methods: We developed novel small-molecule antibacterials which are easily accessible in a simple one-pot synthesis. The central cyclopentaindole core is substituted with two indole residues. Various indole and cyclopentane substituents have been introduced. Additionally, first indole substituted propene compounds as ring-open variants of the cyclopentaindoles have been yielded and evaluated as antibacterials against Staphylococcus aureus and Enterococcus strains. Results: Most effective compounds have been those with a bromo cyclopentane and a chloro indole substitution. First lead compounds were identified with promising activities similar to that observed in vitro for last resort antibiotics, so that the novel compounds enriche the pool of perspective small-molecule antibacterial drug candidates.


Assuntos
Antibacterianos/farmacologia , Enterococcus/efeitos dos fármacos , Hidrocarbonetos Bromados/farmacologia , Hidrocarbonetos Iodados/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Staphylococcus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Hidrocarbonetos Bromados/síntese química , Hidrocarbonetos Bromados/química , Hidrocarbonetos Iodados/síntese química , Hidrocarbonetos Iodados/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química
17.
ACS Infect Dis ; 6(7): 1674-1685, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32519844

RESUMO

We report on the antibacterial activity of five phenolic lipids derived from anacardic acid characterized by increasing alkyl chain lengths with 6, 8, 10, 12, or 14 carbon atoms. The compounds were profiled for their physicochemical properties, transport across epithelial monolayers, cytotoxicity, and antibacterial activity as compared to common antibiotics. No cytotoxicity was reported in cell lines of fibroblast, hepatic, colorectal, or renal origin. C10 and C12 significantly increased the survival in a Galleria mellonella model infected with multi-drug-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococci (VRE) as compared to the untreated control group. Future studies are required to corroborate these findings in relevant animal model systems of infection.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Enterococos Resistentes à Vancomicina , Ácidos Anacárdicos/farmacologia , Animais , Antibacterianos/farmacologia
18.
Pharmaceuticals (Basel) ; 13(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485876

RESUMO

Multidrug-resistant bacteria represent one of the most important health care problems worldwide. While there are numerous drugs available for standard therapy, there are only a few compounds capable of serving as a last resort for severe infections. Therefore, approaches to control multidrug-resistant bacteria must be implemented. Here, a strategy of reactivating the established glycopeptide antibiotic vancomycin by structural modification with polycationic peptides and subsequent fatty acid conjugation to overcome the resistance of multidrug-resistant bacteria was followed. This study especially focuses on the structure-activity relationship, depending on the modification site and fatty acid chain length. The synthesized conjugates showed high antimicrobial potential on vancomycin-resistant enterococci. We were able to demonstrate that the antimicrobial activity of the vancomycin-lipopeptide conjugates depends on the chain length of the attached fatty acid. All conjugates showed good cytocompatibility in vitro and in vivo. Radiolabeling enabled the in vivo determination of pharmacokinetics in Wistar rats by molecular imaging and biodistribution studies. An improved biodistribution profile in comparison to unmodified vancomycin was observed. While vancomycin is rapidly excreted by the kidneys, the most potent conjugate shows a hepatobiliary excretion profile. In conclusion, these results demonstrate the potential of the structural modification of already established antibiotics to provide highly active compounds for tackling multidrug-resistant bacteria.

19.
Angew Chem Int Ed Engl ; 59(23): 8823-8827, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32190958

RESUMO

Multidrug-resistant bacteria represent one of the biggest challenges facing modern medicine. The increasing prevalence of glycopeptide resistance compromises the efficacy of vancomycin, for a long time considered as the last resort for the treatment of resistant bacteria. To reestablish its activity, polycationic peptides were conjugated to vancomycin. By site-specific conjugation, derivatives that bear the peptide moiety at four different sites of the antibiotic were synthesized. The most potent compounds exhibited an approximately 1000-fold increased antimicrobial activity and were able to overcome the most important types of vancomycin resistance. Additional blocking experiments using d-Ala-d-Ala revealed a mode of action beyond inhibition of cell-wall formation. The antimicrobial potential of the lead candidate FU002 for bacterial infection treatments could be demonstrated in an in vivo study. Molecular imaging and biodistribution studies revealed that conjugation engenders superior pharmacokinetics.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos/química , Resistência a Vancomicina/efeitos dos fármacos , Vancomicina/química , Vancomicina/farmacologia , Animais , Antibacterianos/farmacocinética , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Feminino , Ratos , Ratos Wistar , Distribuição Tecidual , Vancomicina/farmacocinética
20.
Antibiotics (Basel) ; 8(4)2019 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-31684039

RESUMO

Defeat of the antibiotic resistance of pathogenic bacteria is one great challenge today and for the future. In the last century many classes of effective antibacterials have been developed, so that upcoming resistances could be met with novel drugs of various compound classes. Meanwhile, there is a certain lack of research of the pharmaceutical companies, and thus there are missing developments of novel antibiotics. Gram-positive bacteria are the most important cause of clinical infections. The number of novel antibacterials in clinical trials is strongly restricted. There is an urgent need to find novel antibacterials. We used synthetic chemistry to build completely novel hybrid molecules of substituted indoles and benzothiophene. In a simple one-pot reaction, two novel types of thienocarbazoles were yielded. Both indole substituted compound classes have been evaluated as completely novel antibacterials against the Staphylococcus and Enterococcus species. The evaluated partly promising activities depend on the indole substituent type. First lead compounds have been evaluated within in vivo studies. They confirmed the in vitro results for the new classes of small-molecule antibacterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA